
originally published in

LEUKOS

DLA Publications, May 2024

OPEN-SOURCE
PYTHON MODULE
FOR THE ANALYSIS
OF PERSONALIZED
LIGHT EXPOSURE
DATA FROM WEARABLE
LIGHT LOGGERS AND
DOSIMETERS
Grégory Hammad / Katharina Wulff / Debra J. Skene / Mirjam Münch / Manuel Spitschan

Reprint

2 DLA Publications, Reprint, May 2024

Light exposure fundamentally influences human
physiology and behavior, with light being the
most important zeitgeber of the circadian system.
Throughout the day, people are exposed to various
scenes differing in light level, spectral composition
and spatio-temporal properties. Personalized light
exposure can be measured through wearable light
loggers and dosimeters, including wrist-worn acti-
meters containing light sensors, yielding time series
of an individual’s light exposure. There is growing
interest in relating light exposure patterns to health
outcomes, requiring analytic techniques to summa-
rize light exposure properties. Building on the previ-
ously published Python-based pyActigraphy module,
here we introduce the module pyLight. This module
allows users to extract light exposure data record-
ings from a wide range of devices. It also includes
software tools to clean and filter the data, and to
compute common metrics for quantifying and visual-
izing light exposure data. For this tutorial, we demon-
strate the use of pyLight in one example dataset with
the following processing steps: (1) loading, access-
ing and visual inspection of a publicly available data-
set, (2) truncation, masking, filtering and binarization
of the dataset, (3) calculation of summary metrics,
including time above threshold (TAT) and mean light
timing above threshold (MLiT). The pyLight module
paves the way for open-source, largescale automat-
ed analyses of light-exposure data.

3DLA Publications, Reprint, May 2024

 1. Introduction Content

1. Introduction
 Page 3
2. Overview of pyLight
 Page 6
3. A worked example
 Page 7
4. Future directions
 Page 12
5. Conclusion
 Page 12

 Authors contributions
 Disclosure statement
 Acknowledgements
 Page 12

 References
 Page 13

 Funding
 Copyrights
 Page 15

Light exposure profoundly affects human physiology and be-
havior, including the entrainment of the circadian clock, the
production of the hormone melatonin, alertness and mood
(Blume et al. 2019; Vetter et al. 2022). These so-called “non-
visual” effects of light are receiving attention from a variety of
professionals, including neuroscientists, psychologists, light-
ing designers, architects, interdisciplinary scientists, regula-
tors, and the general public (Houser and Esposito 2021;
Stefani and Cajochen 2021; Vetter et al. 2022). Moreover,
negative consequences from potentially insufficient indoor
illumination during daytime and excessive light exposure in
the evening from light-emitting devices, namely light in the
shortwavelength range, are increasingly recognized.

Recently, recommendations for optimal ambient light ex-
posure levels have been developed, proposing optimal light
levels for daytime, evening and nighttime light exposure
(Brown et al. 2022) and exemplifying the translation of re-
cent scientific findings in this field into practice (Spitschan
and Joyce 2023).

In parallel to research uncovering the impact of light on
human physiology and behavior, small, light loggers, which
are wearable devices measuring personalized light expo-
sure over extended periods, have been developed (Hart-
meyer et al. 2022). Light loggers include commercial wrist-
worn light sensors built into actimetry devices (e.g., Actigraph
wGT3X-BT, Actigraph Headquarters; Pensacola, FL, USA;
CamNTech Actiwatch 4/Motionwatch-8 CamNtech, Fenstan-
ton, UK; Condor ActTrust1/2, Condor, São Paulo, Brazil),
brooches and pendants (e.g., Lys, Lys Technologies, Copen-
hagen, Denmark, Condor ActLumus, Condor, São Paulo,
Brazil) and research-grade near-corneal-plane light loggers
(e.g. LuxBlick (Hubalek et al. 2006, 2010), lido (Stampfli et al.
2023)). There is a large and growing set of studies using light
loggers (Aarts et al. 2017; Bierman et al. 2005; Campbell et
al. 1988; Dumont and Beaulieu 2007; Figueiro et al. 2013;

4 DLA Publications, Reprint, May 2024

OPEN-SOURCE
PYTHON MODULE
FOR THE ANALYSIS
OF PERSONALIZED
LIGHT EXPOSURE
DATA FROM WEARABLE
LIGHT LOGGERS AND
DOSIMETERS

“Light exposure funda-
mentally influences
human physiology and
behavior, with light
being the most important
zeitgeber of the circadian
system.” (Hammad et al. 2024, p.2)

5DLA Publications, Reprint, May 2024

Hubalek et al. 2006, 2010; Jardim et al. 2011; Markvart et al.
2015; Okudaira et al. 1983; Savides et al. 1986; Scheuermai-
er et al. 2010; Smolders et al. 2013; Spitschan et al. 2022;
Thorne et al. 2009; Wams et al. 2017; Woelders et al. 2017),
differing in calibration properties, position, data pre-pro-
cessing and recording intervals (Hartmeyer et al. 2022).

A dominant factor in light exposure is exposure to day-
light (Münch et al. 2020), which is given by illumination due
to the Earth’s rotation. However, an individual’s personal light
exposure shows great variability over time (Webler 2019),
depending on light availability in the environment (indoors
vs. outdoors; different lighting and window designs, types of
light sources used), activities (outdoor and indoor activities
at work, school, at home) and individual behavior (eye move-
ments). Due to this variability, light exposure data must be
measured individually in a personalized fashion, and cannot
be predicted simply from environmental measurements.

The availability of personalized light exposure data re-
quires the development of analytical and statistical tools, for
which a series of metrics have been proposed (Hartmeyer et
al. 2022). While various open-source tools have been devel-
oped to perform analysis of light data in general, including
the web-based luox platform (https://luox.app/, (Spitschan
et al. 2021)), LuxPy (Smet 2020), and colour (Mansencal et
al. 2022) for the calculation of quantities from spectral and
colorimetric data, none of these calculate exposure metrics
from time-series light exposure data.

To facilitate the analysis of light exposure data, we intro-
duce an open-source Python module for the analysis of
time-series data. This module, termed pyLight, is part of and
extends the previously published open-source pyActigraphy
Python package (Hammad et al. 2021), which implements
functions for the loading, processing and analysis of actigra-
phy data. In this article, we will introduce the module, de-
scribe the contained functions and demonstrate the use of
the module, with a specific focus on importing data, manip-
ulating data, and calculating exposure metrics from the data.
To our knowledge, pyLight is the only software package
allowing for the convenient calculation of light metrics in a
device-agnostic fashion.

6 DLA Publications, Reprint, May 2024

 2. Overview of pyLight
 2.1. Overall architecture
The pyLight module has been designed to be
used independently within the pyActigraphy pack-
age. The module interfaces with the existing infra-
structure of pyActigraphy. The basis of pyLight is a
generic class holding the light exposure data. Via
multiple inheritance, this class provides access to a
list of analysis metrics dedicated to light exposure
data analysis. Derived classes can then easily be
implemented to support and read various native
file formats from different light exposure devices.
An example of such a class is provided by the Gen-
LightDevice class of pyLight.

 2.2. Accessing data from different devices
In addition, for each device supported by pyAc-
tigraphy (e.g., Actigraph wGT3X-BT, Actigraph
Headquarters; Pensacola, FL, USA; CamNTech
Actiwatch 4/Motionwatch-8 CamNTech, Fenstan-
ton, UK; Condor ActTrust1/2, Condor, São Paolo,
Brazil), the pyLight base class is able to handle the
light exposure data recorded by these specific de-
vices through a common framework once export-
ed in proprietary software to text-based files.

 2.3. Calculation of light exposure metrics
pyLight implements a series of light exposure met-
rics. These exposure metrics can be applied to a
range of different light logger-measured quanti-
ties,including photopic illuminance or melanopic
equivalent daylight illuminance (mEDI), and other
quantities derived from spectral or multi-channel
light logger measurements. As the metrics are gen-
erally agnostic to the exact quantity, in the below, we
use the placeholder term “light exposure intensity.”

 2.3.1. Aggregated statistics
Means, medians and other summary statistics can
be calculated over the entire recording or over us-
er-defined periods.

 2.3.2. Threshold-based metrics
pyLight allows for the calculation of the time spent
above a user-defined threshold (time above thresh-
old; TAT) as well as the mean light timing above
threshold (MLiT) developed by Reid and colleagues
(Reid et al. 2014). The MLiT metric is defined as:

Where Ijk is 1 if the light exposure intensity is above
the threshold C for the daily period j on the day
k and 0 otherwise, j is the index of the daily peri-
od, m is the number of daily periods (e.g., 1440
for light exposure intensity data measured every
minute) and n is the number of days in the record-
ing. This variable computes the time of day around
which the mean light exposure intensity above the
threshold C is centered. The TAT is simply the num-
ber of minutes above the defined threshold C. C is
user-defined, thereby allowing for the probing of
several different thresholds.

 2.3.3. L5 and M10 metrics
Calculation of time of day and mean value of light
exposure intensity during the 5 hours window of
least exposure or the 10 hours of maximal expo-
sure (van Someren et al. 1997). L5 and M10 metrics
are extreme values within these periods, without
regard to the average light exposure intensity.

 2.3.4. Inter-daily stability (IS) and
intradaily variability (IV)

These metrics have primarily been used to quan-
tify rest-activity rhythms obtained from actigraphy
studies (Witting et al. 1990). IS quantifies the sta-
bility of the daily pattern across days, while IV rep-
resents its fragmentation across the day. IS and IV
have recently been applied to light exposure pat-
terns and related to rest-rhythms (Kim et al. 2020).
 Mathematically, IS and IV are are defined as:

where xh is the average light exposure intensity for
period h across all days, xi is the light exposure in-
tensity during period i, x is the overall mean light
exposure intensity, n is the number of periods
contained in the recording and p is the number of
daily periods. IS is simply the 24-h value of the chi-
square periodogram, normalized by the number
of periods, n (Sokolove and Bushell 1978).

 2.3.5. Transformations
Data can be transformed conveniently into loga-
rithmic scales.

equivalent daylight illuminance (mEDI), and other
quantities derived from spectral or multi-channel
light logger measurements. As the metrics are gen-
erally agnostic to the exact quantity, in the below,
we use the placeholder term “light exposure
intensity.”

2.3.1. Aggregated statistics
Means, medians and other summary statistics can
be calculated over the entire recording or over
user-defined periods.

2.3.2. Threshold-based metrics
pyLight allows for the calculation of the time spent
above a user-defined threshold (time above threshold;
TAT) as well as the mean light timing above threshold
(MLiT) developed by Reid and colleagues (Reid et al.
2014). The MLiT metric is defined as:

MLiT Cð Þ ¼

Pm

j¼1

Pn

k¼1
j � Ijk Cð Þ

Pm

j¼1

Pn

k¼1
Ijk Cð Þ

Where Ijk is 1 if the light exposure intensity is above
the threshold C for the daily period j on the day k and
0 otherwise, j is the index of the daily period, m is the
number of daily periods (e.g., 1440 for light exposure
intensity data measured every minute) and n is the
number of days in the recording. This variable com-
putes the time of day around which the mean light
exposure intensity above the threshold C is centered.
The TAT is simply the number of minutes above the
defined threshold C. C is user-defined, thereby allow-
ing for the probing of several different thresholds.

2.3.3. L5 and M10 metrics
Calculation of time of day and mean value of light
exposure intensity during the 5 hours window of least
exposure or the 10 hours of maximal exposure (van
Someren et al. 1997). L5 and M10 metrics are extreme
values within these periods, without regard to the
average light exposure intensity.

2.3.4. Inter-daily stability (IS) and intradaily
variability (IV)
These metrics have primarily been used to quantify
rest-activity rhythms obtained from actigraphy stu-
dies (Witting et al. 1990). IS quantifies the stability of

the daily pattern across days, while IV represents its
fragmentation across the day. IS and IV have recently
been applied to light exposure patterns and related to
rest-rhythms (Kim et al. 2020).

Mathematically, IS and IV are are defined as:

IS ¼
n
Pp

h¼1
�xh � �xð Þ2

p
Pn

i¼1
xi � �xð Þ2

IV ¼
n
Pn�1

i¼1
xiþ1 � xið Þ2

n � 1ð Þ
Pn

i¼1
xi � �xð Þ2

;

where �xh is the average light exposure intensity for
period h across all days, xi is the light exposure
intensity during period i, �x is the overall mean
light exposure intensity, n is the number of periods
contained in the recording and p is the number of
daily periods. IS is simply the 24-h value of the
chi-square periodogram, normalized by the num-
ber of periods, n (Sokolove and Bushell 1978).

2.3.5. Transformations
Data can be transformed conveniently into loga-
rithmic scales.

2.4. Masking and data selection

A crucial step prior to the analysis of the light expo-
sure data is the processing of raw data, i.e., removing
light data where the device was not worn, or covered
by sleeves (for wrist worn devices). To implement
these preprocessing steps, the pyLight module offers
various methods to mask periods of data acquisi-
tions, either by only reading a specific continuous
period of data defined by a user-defined start and
stop time, or by adding periods where the unwanted
data are masked, thereby not contributing to any
subsequent analysis. Such periods can either be
defined manually or specified in a separate file for
easier editing and storage (see online tutorial at
https://ghammad.github.io/pyActigraphy/pyLight-
DataManip.html#Masking). In addition, summary
statistics, such as mean, median, percentiles or stan-
dard deviations, as well as MLiT or TAT, can be
obtained for consecutive or arbitrary time windows.

LEUKOS 3

equivalent daylight illuminance (mEDI), and other
quantities derived from spectral or multi-channel
light logger measurements. As the metrics are gen-
erally agnostic to the exact quantity, in the below,
we use the placeholder term “light exposure
intensity.”

2.3.1. Aggregated statistics
Means, medians and other summary statistics can
be calculated over the entire recording or over
user-defined periods.

2.3.2. Threshold-based metrics
pyLight allows for the calculation of the time spent
above a user-defined threshold (time above threshold;
TAT) as well as the mean light timing above threshold
(MLiT) developed by Reid and colleagues (Reid et al.
2014). The MLiT metric is defined as:

MLiT Cð Þ ¼

Pm

j¼1

Pn

k¼1
j � Ijk Cð Þ

Pm

j¼1

Pn

k¼1
Ijk Cð Þ

Where Ijk is 1 if the light exposure intensity is above
the threshold C for the daily period j on the day k and
0 otherwise, j is the index of the daily period, m is the
number of daily periods (e.g., 1440 for light exposure
intensity data measured every minute) and n is the
number of days in the recording. This variable com-
putes the time of day around which the mean light
exposure intensity above the threshold C is centered.
The TAT is simply the number of minutes above the
defined threshold C. C is user-defined, thereby allow-
ing for the probing of several different thresholds.

2.3.3. L5 and M10 metrics
Calculation of time of day and mean value of light
exposure intensity during the 5 hours window of least
exposure or the 10 hours of maximal exposure (van
Someren et al. 1997). L5 and M10 metrics are extreme
values within these periods, without regard to the
average light exposure intensity.

2.3.4. Inter-daily stability (IS) and intradaily
variability (IV)
These metrics have primarily been used to quantify
rest-activity rhythms obtained from actigraphy stu-
dies (Witting et al. 1990). IS quantifies the stability of

the daily pattern across days, while IV represents its
fragmentation across the day. IS and IV have recently
been applied to light exposure patterns and related to
rest-rhythms (Kim et al. 2020).

Mathematically, IS and IV are are defined as:

IS ¼
n
Pp

h¼1
�xh � �xð Þ2

p
Pn

i¼1
xi � �xð Þ2

IV ¼
n
Pn�1

i¼1
xiþ1 � xið Þ2

n � 1ð Þ
Pn

i¼1
xi � �xð Þ2

;

where �xh is the average light exposure intensity for
period h across all days, xi is the light exposure
intensity during period i, �x is the overall mean
light exposure intensity, n is the number of periods
contained in the recording and p is the number of
daily periods. IS is simply the 24-h value of the
chi-square periodogram, normalized by the num-
ber of periods, n (Sokolove and Bushell 1978).

2.3.5. Transformations
Data can be transformed conveniently into loga-
rithmic scales.

2.4. Masking and data selection

A crucial step prior to the analysis of the light expo-
sure data is the processing of raw data, i.e., removing
light data where the device was not worn, or covered
by sleeves (for wrist worn devices). To implement
these preprocessing steps, the pyLight module offers
various methods to mask periods of data acquisi-
tions, either by only reading a specific continuous
period of data defined by a user-defined start and
stop time, or by adding periods where the unwanted
data are masked, thereby not contributing to any
subsequent analysis. Such periods can either be
defined manually or specified in a separate file for
easier editing and storage (see online tutorial at
https://ghammad.github.io/pyActigraphy/pyLight-
DataManip.html#Masking). In addition, summary
statistics, such as mean, median, percentiles or stan-
dard deviations, as well as MLiT or TAT, can be
obtained for consecutive or arbitrary time windows.

LEUKOS 3

7DLA Publications, Reprint, May 2024

 2.4. Masking and data selection
A crucial step prior to the analysis of the light expo-
sure data is the processing of raw data, i.e., re-
moving light data where the device was not worn,
or covered by sleeves (for wrist worn devices). To
implement these preprocessing steps, the pyLight
module offers various methods to mask periods of
data acquisitions, either by only reading a specific
continuous period of data defined by a user-de-
fined start and stop time, or by adding periods
where the unwanted data are masked, thereby not
contributing to any subsequent analysis. Such pe-
riods can either be defined manually or specified
in a separate file for easier editing and storage
(see online tutorial at https://ghammad.github.
io/pyActigraphy/pyLightDataManip.html#Mask-
ing). In addition, summary statistics, such as mean,
median, percentiles or dard deviations, as well as
MLiT or TAT, can be obtained for consecutive or ar-
bitrary time windows.
 At present, there is no consensus on how
light exposure data should be processed. Users of
pyLight must understand that inclusion and exclu-
sion of specific periods based on criteria may lead
to biases of data, and we recommend an in-depth
analysis of selection criteria.

	 2.5.	Resampling	and	filtering
Another critical aspect of data processing covered
by pyLight is resampling and filtering data before
analysis. Often, fluctuations occurring at the acqui-
sition frequency (e.g. tenths of a second) are con-
sidered irrelevant for the analysis of light exposure
levels. To deal with these fluctuations, the pyLight
module offers the possibility to resample the data
to a specified frequency and aggregate periods
with a custom function (sum, mean, median, etc).
The module also allows users to digitally filter spe-
cific frequencies using a Butterworth filter.

 2.6. Thresholding and binarization
Sometimes it is useful to only consider data with
values above a specific numerical threshold.
Thresholding can either discard data below that
threshold, or the data can be transformed into bi-
nary data, where data above the threshold are re-
placed with 1 and 0 otherwise. The pyLight module
provides various methods to directly access raw,
thresholded or binarized data.
 For some metrics, (e.g. TAT and MLiT), it is
possible to directly specify the threshold used for
the computation of such metrics.

 2.7. Documentation
The documentation of thepyLightt module is inte-
grated into the documentation of the pyActigraphy

package, which contains installation and “Quick
Start” instructions for users, information about the
authors, a code of conduct and the code license.
The documentation is generated automatically
from source code annotations and published. The
list of online tutorials for pyActigraphy has been
extended with specific tutorials for the pyLight
module. Such tutorials are particularly useful for
teaching users with various levels of programming
expertise how to use all the functionalities availa-
ble in the module. They start with basic instructions
about how to read and visualize light exposure data,
progress with examples on how to manipulate light
exposure data (masking, resampling, thresholding,
etc) and finish with more advanced code lines to
compute specific light exposure metrics.

 2.8. Code availability
The code, documentation and are open-source
and available on GitHub (https://github.com/
ghammad/pyActigraphy). The code base reposi-
tory is licensed under the GNU General Public Li-
cense v3.0. When the module is used for calcula-
tions, please cite this paper along with the original
pyActigraphy publication Hammad et al. (2021).

 2.9. Contributing
Researchers wishing to contribute to the pyLight
module are welcome to do so by issuing pull re-
quests on the pyActigraphy GitHub repository
(https://github.com/ghammad/pyActigraphy).

 3. A worked example
 3.1. Basics
The following worked example will guide the read-
er on how to use the pyLight module by perform-
ing the analysis of a publicly available data set of
actigraphy data licensed under the CC0 1.0 Uni-
versal (CC0 1.0) Public Domain Dedication license
(Angelova et al. 2020). The data, collected with the
Respironics Actiwatch Spectrum Pro (Respironics,
Bend, OR, USA), were analyzed in two other pub-
lications (Kusmakar et al. 2021; Mellor et al. 2019).

 3.2. Requirements
To follow this example, basic knowledge and a
working installation of Python is a prerequisite.
Many operating systems (including macOS and Li-
nux) already come with a Python installation, but
for others, it needs to be installed. The reader is
pointed to the official Python website (https://wiki.
python.org/moin/BeginnersGuide/Download) for
instructions, but this information can be conven-
iently obtained through any web search engine.

8 DLA Publications, Reprint, May 2024

In addition, the pyActigraphy package must be
installed (see https://ghammad.github.io/pyActig-
raphy/index.html#installation for instructions). This
can be done using pip, the Python package man-
agement system.

 3.3. Example
As in any Python script, the first step consists in
importing the necessary modules. As already men-
tioned, pyLight forms part of the pyActigraphy
package. Therefore, we simply start by importing
it. Other packages are used for convenience:

Now, we define the path to the data to analyze:

The data files are stored in two different directo-
ries. One, CLIENT, is for data from chronic insom-
nia participants and the other, PARTNERS, is for
data from their respective partners.

 3.3.1. Individual data analysis
Since these data were acquired with Respironics
devices, we use the dedicated reader function,
read_raw_rpx, from the IO module of pyActigraphy
to read the input data file:

As usual in python, more information about this
function can be obtained with:

The input file contains both locomotor activity
and light data. The latter can easily be accessed
through the attribute light which holds an object
of class LightRecording:

To inspect which light channels were found in this
recording:

returns a list with the names of the light channels.
To visualize the data, we can plot all the light chan-
nels contained in the recording (Fig. 1):

To save the figure to a file for later use, the function
write_image can be used:

Now that we have visually inspected our data, we
can compute various light exposure metrics as fol-
lows:

instal led (see https://ghammad.github.io/
pyActigraphy/index.html#installation for instruc-
tions). This can be done using pip, the Python
package management system.

3.3. Example

As in any Python script, the first step consists in
importing the necessary modules. As already men-
tioned, pyLight forms part of the pyActigraphy
package. Therefore, we simply start by importing
it. Other packages are used for convenience:

import pyActigraphy
Import the logarithm base 10 function
from the base Python math package
from math import log10
Package for tabular data manipula-
tion
import pandas as pd
Package for statistical analyses
import pingouin as pg
Package for interactive plotting
import plotly.graph_objects as go

Now, we define the path to the data to analyze:

Adapt the path to the actual path
fpath = ‘/path/to/data’

The data files are stored in two different direc-
tories. One, CLIENT, is for data from chronic
insomnia participants and the other, PARTNERS,
is for data from their respective partners.

3.3.1. Individual data analysis
Since these data were acquired with Respironics
devices, we use the dedicated reader function, read_-
raw_rpx, from the IO module of pyActigraphy to read
the input data file:

raw = pyActigraphy.io.read_raw_rpx(
fpath+‘CLIENT/
C1025_Acti1_Treatmen-
t_6_09_2016_2_52_00_PM_New_Analy-
sis.csv’,
language=‘ENG_UK’,

period=‘6D’, # Restrict data to
the first 6 days.

)

As usual in python, more information about this
function can be obtained with:

help(pyActigraphy.io.read_raw_rpx)

The input file contains both locomotor activity
and light data. The latter can easily be accessed
through the attribute light which holds an object of
class LightRecording:

raw.light

To inspect which light channels were found in this
recording:

raw.light.get_channel_list()

returns a list with the names of the light channels.
To visualize the data, we can plot all the light
channels contained in the recording (Fig. 1):

layout = go.Layout(
title=“Light exposure data”,
xaxis=dict(title=“Date time”),
yaxis=dict(title=“$\log_{10}
(\mathrm{Light~intensity}+1)$”),
showlegend=True

)
fig = go.Figure(

data=[
go.Scatter(
x=raw.light.get_channel(chan-
nel).index.astype(str),
y=raw.light.get_channel(chan-
nel),
name=channel,

)
for channel in raw.light.get_ch-
annel_list()

],
layout=layout

)
fig.show () # Interactive figure

display

To save the figure to a file for later use, the func-
tion write_image can be used:

fig.write_image(‘fig_ind_light.
png’, scale = 6)

Now that we have visually inspected our data, we can
compute various light exposure metrics as follows:

LEUKOS 5

instal led (see https://ghammad.github.io/
pyActigraphy/index.html#installation for instruc-
tions). This can be done using pip, the Python
package management system.

3.3. Example

As in any Python script, the first step consists in
importing the necessary modules. As already men-
tioned, pyLight forms part of the pyActigraphy
package. Therefore, we simply start by importing
it. Other packages are used for convenience:

import pyActigraphy
Import the logarithm base 10 function
from the base Python math package
from math import log10
Package for tabular data manipula-
tion
import pandas as pd
Package for statistical analyses
import pingouin as pg
Package for interactive plotting
import plotly.graph_objects as go

Now, we define the path to the data to analyze:

Adapt the path to the actual path
fpath = ‘/path/to/data’

The data files are stored in two different direc-
tories. One, CLIENT, is for data from chronic
insomnia participants and the other, PARTNERS,
is for data from their respective partners.

3.3.1. Individual data analysis
Since these data were acquired with Respironics
devices, we use the dedicated reader function, read_-
raw_rpx, from the IO module of pyActigraphy to read
the input data file:

raw = pyActigraphy.io.read_raw_rpx(
fpath+‘CLIENT/
C1025_Acti1_Treatmen-
t_6_09_2016_2_52_00_PM_New_Analy-
sis.csv’,
language=‘ENG_UK’,

period=‘6D’, # Restrict data to
the first 6 days.

)

As usual in python, more information about this
function can be obtained with:

help(pyActigraphy.io.read_raw_rpx)

The input file contains both locomotor activity
and light data. The latter can easily be accessed
through the attribute light which holds an object of
class LightRecording:

raw.light

To inspect which light channels were found in this
recording:

raw.light.get_channel_list()

returns a list with the names of the light channels.
To visualize the data, we can plot all the light
channels contained in the recording (Fig. 1):

layout = go.Layout(
title=“Light exposure data”,
xaxis=dict(title=“Date time”),
yaxis=dict(title=“$\log_{10}
(\mathrm{Light~intensity}+1)$”),
showlegend=True

)
fig = go.Figure(

data=[
go.Scatter(
x=raw.light.get_channel(chan-
nel).index.astype(str),
y=raw.light.get_channel(chan-
nel),
name=channel,

)
for channel in raw.light.get_ch-
annel_list()

],
layout=layout

)
fig.show () # Interactive figure

display

To save the figure to a file for later use, the func-
tion write_image can be used:

fig.write_image(‘fig_ind_light.
png’, scale = 6)

Now that we have visually inspected our data, we can
compute various light exposure metrics as follows:

LEUKOS 5

instal led (see https://ghammad.github.io/
pyActigraphy/index.html#installation for instruc-
tions). This can be done using pip, the Python
package management system.

3.3. Example

As in any Python script, the first step consists in
importing the necessary modules. As already men-
tioned, pyLight forms part of the pyActigraphy
package. Therefore, we simply start by importing
it. Other packages are used for convenience:

import pyActigraphy
Import the logarithm base 10 function
from the base Python math package
from math import log10
Package for tabular data manipula-
tion
import pandas as pd
Package for statistical analyses
import pingouin as pg
Package for interactive plotting
import plotly.graph_objects as go

Now, we define the path to the data to analyze:

Adapt the path to the actual path
fpath = ‘/path/to/data’

The data files are stored in two different direc-
tories. One, CLIENT, is for data from chronic
insomnia participants and the other, PARTNERS,
is for data from their respective partners.

3.3.1. Individual data analysis
Since these data were acquired with Respironics
devices, we use the dedicated reader function, read_-
raw_rpx, from the IO module of pyActigraphy to read
the input data file:

raw = pyActigraphy.io.read_raw_rpx(
fpath+‘CLIENT/
C1025_Acti1_Treatmen-
t_6_09_2016_2_52_00_PM_New_Analy-
sis.csv’,
language=‘ENG_UK’,

period=‘6D’, # Restrict data to
the first 6 days.

)

As usual in python, more information about this
function can be obtained with:

help(pyActigraphy.io.read_raw_rpx)

The input file contains both locomotor activity
and light data. The latter can easily be accessed
through the attribute light which holds an object of
class LightRecording:

raw.light

To inspect which light channels were found in this
recording:

raw.light.get_channel_list()

returns a list with the names of the light channels.
To visualize the data, we can plot all the light
channels contained in the recording (Fig. 1):

layout = go.Layout(
title=“Light exposure data”,
xaxis=dict(title=“Date time”),
yaxis=dict(title=“$\log_{10}
(\mathrm{Light~intensity}+1)$”),
showlegend=True

)
fig = go.Figure(

data=[
go.Scatter(
x=raw.light.get_channel(chan-
nel).index.astype(str),
y=raw.light.get_channel(chan-
nel),
name=channel,

)
for channel in raw.light.get_ch-
annel_list()

],
layout=layout

)
fig.show () # Interactive figure

display

To save the figure to a file for later use, the func-
tion write_image can be used:

fig.write_image(‘fig_ind_light.
png’, scale = 6)

Now that we have visually inspected our data, we can
compute various light exposure metrics as follows:

LEUKOS 5

instal led (see https://ghammad.github.io/
pyActigraphy/index.html#installation for instruc-
tions). This can be done using pip, the Python
package management system.

3.3. Example

As in any Python script, the first step consists in
importing the necessary modules. As already men-
tioned, pyLight forms part of the pyActigraphy
package. Therefore, we simply start by importing
it. Other packages are used for convenience:

import pyActigraphy
Import the logarithm base 10 function
from the base Python math package
from math import log10
Package for tabular data manipula-
tion
import pandas as pd
Package for statistical analyses
import pingouin as pg
Package for interactive plotting
import plotly.graph_objects as go

Now, we define the path to the data to analyze:

Adapt the path to the actual path
fpath = ‘/path/to/data’

The data files are stored in two different direc-
tories. One, CLIENT, is for data from chronic
insomnia participants and the other, PARTNERS,
is for data from their respective partners.

3.3.1. Individual data analysis
Since these data were acquired with Respironics
devices, we use the dedicated reader function, read_-
raw_rpx, from the IO module of pyActigraphy to read
the input data file:

raw = pyActigraphy.io.read_raw_rpx(
fpath+‘CLIENT/
C1025_Acti1_Treatmen-
t_6_09_2016_2_52_00_PM_New_Analy-
sis.csv’,
language=‘ENG_UK’,

period=‘6D’, # Restrict data to
the first 6 days.

)

As usual in python, more information about this
function can be obtained with:

help(pyActigraphy.io.read_raw_rpx)

The input file contains both locomotor activity
and light data. The latter can easily be accessed
through the attribute light which holds an object of
class LightRecording:

raw.light

To inspect which light channels were found in this
recording:

raw.light.get_channel_list()

returns a list with the names of the light channels.
To visualize the data, we can plot all the light
channels contained in the recording (Fig. 1):

layout = go.Layout(
title=“Light exposure data”,
xaxis=dict(title=“Date time”),
yaxis=dict(title=“$\log_{10}
(\mathrm{Light~intensity}+1)$”),
showlegend=True

)
fig = go.Figure(

data=[
go.Scatter(
x=raw.light.get_channel(chan-
nel).index.astype(str),
y=raw.light.get_channel(chan-
nel),
name=channel,

)
for channel in raw.light.get_ch-
annel_list()

],
layout=layout

)
fig.show () # Interactive figure

display

To save the figure to a file for later use, the func-
tion write_image can be used:

fig.write_image(‘fig_ind_light.
png’, scale = 6)

Now that we have visually inspected our data, we can
compute various light exposure metrics as follows:

LEUKOS 5

instal led (see https://ghammad.github.io/
pyActigraphy/index.html#installation for instruc-
tions). This can be done using pip, the Python
package management system.

3.3. Example

As in any Python script, the first step consists in
importing the necessary modules. As already men-
tioned, pyLight forms part of the pyActigraphy
package. Therefore, we simply start by importing
it. Other packages are used for convenience:

import pyActigraphy
Import the logarithm base 10 function
from the base Python math package
from math import log10
Package for tabular data manipula-
tion
import pandas as pd
Package for statistical analyses
import pingouin as pg
Package for interactive plotting
import plotly.graph_objects as go

Now, we define the path to the data to analyze:

Adapt the path to the actual path
fpath = ‘/path/to/data’

The data files are stored in two different direc-
tories. One, CLIENT, is for data from chronic
insomnia participants and the other, PARTNERS,
is for data from their respective partners.

3.3.1. Individual data analysis
Since these data were acquired with Respironics
devices, we use the dedicated reader function, read_-
raw_rpx, from the IO module of pyActigraphy to read
the input data file:

raw = pyActigraphy.io.read_raw_rpx(
fpath+‘CLIENT/
C1025_Acti1_Treatmen-
t_6_09_2016_2_52_00_PM_New_Analy-
sis.csv’,
language=‘ENG_UK’,

period=‘6D’, # Restrict data to
the first 6 days.

)

As usual in python, more information about this
function can be obtained with:

help(pyActigraphy.io.read_raw_rpx)

The input file contains both locomotor activity
and light data. The latter can easily be accessed
through the attribute light which holds an object of
class LightRecording:

raw.light

To inspect which light channels were found in this
recording:

raw.light.get_channel_list()

returns a list with the names of the light channels.
To visualize the data, we can plot all the light
channels contained in the recording (Fig. 1):

layout = go.Layout(
title=“Light exposure data”,
xaxis=dict(title=“Date time”),
yaxis=dict(title=“$\log_{10}
(\mathrm{Light~intensity}+1)$”),
showlegend=True

)
fig = go.Figure(

data=[
go.Scatter(
x=raw.light.get_channel(chan-
nel).index.astype(str),
y=raw.light.get_channel(chan-
nel),
name=channel,

)
for channel in raw.light.get_ch-
annel_list()

],
layout=layout

)
fig.show () # Interactive figure

display

To save the figure to a file for later use, the func-
tion write_image can be used:

fig.write_image(‘fig_ind_light.
png’, scale = 6)

Now that we have visually inspected our data, we can
compute various light exposure metrics as follows:

LEUKOS 5

instal led (see https://ghammad.github.io/
pyActigraphy/index.html#installation for instruc-
tions). This can be done using pip, the Python
package management system.

3.3. Example

As in any Python script, the first step consists in
importing the necessary modules. As already men-
tioned, pyLight forms part of the pyActigraphy
package. Therefore, we simply start by importing
it. Other packages are used for convenience:

import pyActigraphy
Import the logarithm base 10 function
from the base Python math package
from math import log10
Package for tabular data manipula-
tion
import pandas as pd
Package for statistical analyses
import pingouin as pg
Package for interactive plotting
import plotly.graph_objects as go

Now, we define the path to the data to analyze:

Adapt the path to the actual path
fpath = ‘/path/to/data’

The data files are stored in two different direc-
tories. One, CLIENT, is for data from chronic
insomnia participants and the other, PARTNERS,
is for data from their respective partners.

3.3.1. Individual data analysis
Since these data were acquired with Respironics
devices, we use the dedicated reader function, read_-
raw_rpx, from the IO module of pyActigraphy to read
the input data file:

raw = pyActigraphy.io.read_raw_rpx(
fpath+‘CLIENT/
C1025_Acti1_Treatmen-
t_6_09_2016_2_52_00_PM_New_Analy-
sis.csv’,
language=‘ENG_UK’,

period=‘6D’, # Restrict data to
the first 6 days.

)

As usual in python, more information about this
function can be obtained with:

help(pyActigraphy.io.read_raw_rpx)

The input file contains both locomotor activity
and light data. The latter can easily be accessed
through the attribute light which holds an object of
class LightRecording:

raw.light

To inspect which light channels were found in this
recording:

raw.light.get_channel_list()

returns a list with the names of the light channels.
To visualize the data, we can plot all the light
channels contained in the recording (Fig. 1):

layout = go.Layout(
title=“Light exposure data”,
xaxis=dict(title=“Date time”),
yaxis=dict(title=“$\log_{10}
(\mathrm{Light~intensity}+1)$”),
showlegend=True

)
fig = go.Figure(

data=[
go.Scatter(
x=raw.light.get_channel(chan-
nel).index.astype(str),
y=raw.light.get_channel(chan-
nel),
name=channel,

)
for channel in raw.light.get_ch-
annel_list()

],
layout=layout

)
fig.show () # Interactive figure

display

To save the figure to a file for later use, the func-
tion write_image can be used:

fig.write_image(‘fig_ind_light.
png’, scale = 6)

Now that we have visually inspected our data, we can
compute various light exposure metrics as follows:

LEUKOS 5

instal led (see https://ghammad.github.io/
pyActigraphy/index.html#installation for instruc-
tions). This can be done using pip, the Python
package management system.

3.3. Example

As in any Python script, the first step consists in
importing the necessary modules. As already men-
tioned, pyLight forms part of the pyActigraphy
package. Therefore, we simply start by importing
it. Other packages are used for convenience:

import pyActigraphy
Import the logarithm base 10 function
from the base Python math package
from math import log10
Package for tabular data manipula-
tion
import pandas as pd
Package for statistical analyses
import pingouin as pg
Package for interactive plotting
import plotly.graph_objects as go

Now, we define the path to the data to analyze:

Adapt the path to the actual path
fpath = ‘/path/to/data’

The data files are stored in two different direc-
tories. One, CLIENT, is for data from chronic
insomnia participants and the other, PARTNERS,
is for data from their respective partners.

3.3.1. Individual data analysis
Since these data were acquired with Respironics
devices, we use the dedicated reader function, read_-
raw_rpx, from the IO module of pyActigraphy to read
the input data file:

raw = pyActigraphy.io.read_raw_rpx(
fpath+‘CLIENT/
C1025_Acti1_Treatmen-
t_6_09_2016_2_52_00_PM_New_Analy-
sis.csv’,
language=‘ENG_UK’,

period=‘6D’, # Restrict data to
the first 6 days.

)

As usual in python, more information about this
function can be obtained with:

help(pyActigraphy.io.read_raw_rpx)

The input file contains both locomotor activity
and light data. The latter can easily be accessed
through the attribute light which holds an object of
class LightRecording:

raw.light

To inspect which light channels were found in this
recording:

raw.light.get_channel_list()

returns a list with the names of the light channels.
To visualize the data, we can plot all the light
channels contained in the recording (Fig. 1):

layout = go.Layout(
title=“Light exposure data”,
xaxis=dict(title=“Date time”),
yaxis=dict(title=“$\log_{10}
(\mathrm{Light~intensity}+1)$”),
showlegend=True

)
fig = go.Figure(

data=[
go.Scatter(
x=raw.light.get_channel(chan-
nel).index.astype(str),
y=raw.light.get_channel(chan-
nel),
name=channel,

)
for channel in raw.light.get_ch-
annel_list()

],
layout=layout

)
fig.show () # Interactive figure

display

To save the figure to a file for later use, the func-
tion write_image can be used:

fig.write_image(‘fig_ind_light.
png’, scale = 6)

Now that we have visually inspected our data, we can
compute various light exposure metrics as follows:

LEUKOS 5

instal led (see https://ghammad.github.io/
pyActigraphy/index.html#installation for instruc-
tions). This can be done using pip, the Python
package management system.

3.3. Example

As in any Python script, the first step consists in
importing the necessary modules. As already men-
tioned, pyLight forms part of the pyActigraphy
package. Therefore, we simply start by importing
it. Other packages are used for convenience:

import pyActigraphy
Import the logarithm base 10 function
from the base Python math package
from math import log10
Package for tabular data manipula-
tion
import pandas as pd
Package for statistical analyses
import pingouin as pg
Package for interactive plotting
import plotly.graph_objects as go

Now, we define the path to the data to analyze:

Adapt the path to the actual path
fpath = ‘/path/to/data’

The data files are stored in two different direc-
tories. One, CLIENT, is for data from chronic
insomnia participants and the other, PARTNERS,
is for data from their respective partners.

3.3.1. Individual data analysis
Since these data were acquired with Respironics
devices, we use the dedicated reader function, read_-
raw_rpx, from the IO module of pyActigraphy to read
the input data file:

raw = pyActigraphy.io.read_raw_rpx(
fpath+‘CLIENT/
C1025_Acti1_Treatmen-
t_6_09_2016_2_52_00_PM_New_Analy-
sis.csv’,
language=‘ENG_UK’,

period=‘6D’, # Restrict data to
the first 6 days.

)

As usual in python, more information about this
function can be obtained with:

help(pyActigraphy.io.read_raw_rpx)

The input file contains both locomotor activity
and light data. The latter can easily be accessed
through the attribute light which holds an object of
class LightRecording:

raw.light

To inspect which light channels were found in this
recording:

raw.light.get_channel_list()

returns a list with the names of the light channels.
To visualize the data, we can plot all the light
channels contained in the recording (Fig. 1):

layout = go.Layout(
title=“Light exposure data”,
xaxis=dict(title=“Date time”),
yaxis=dict(title=“$\log_{10}
(\mathrm{Light~intensity}+1)$”),
showlegend=True

)
fig = go.Figure(

data=[
go.Scatter(
x=raw.light.get_channel(chan-
nel).index.astype(str),
y=raw.light.get_channel(chan-
nel),
name=channel,

)
for channel in raw.light.get_ch-
annel_list()

],
layout=layout

)
fig.show () # Interactive figure

display

To save the figure to a file for later use, the func-
tion write_image can be used:

fig.write_image(‘fig_ind_light.
png’, scale = 6)

Now that we have visually inspected our data, we can
compute various light exposure metrics as follows:

LEUKOS 5

9DLA Publications, Reprint, May 2024

These function outputs are stored in pandas. Series
objects that can easily be manipulated and concat-
enated into a summary table (pandas.DataFrame)
that can be used for further statistical analysis or
saved to a file:

 3.3.2. Group-level analysis
Visualization and inspection of individual data are
an import step in any analysis. However, once this
step is performed and the data are deemed suitable
to analysis, it might be useful to read individual files
by batch and compute metrics at the group level.
 Here, we will show how to read all data files
from both clients and partners, compute various
metrics and compare the two groups.
 To read multiple files at once, we can use the
read_raw function from the IO module of pyActig-
raphy:

Both the clients and partners objects store data,
extracted from each individual files. Therefore, it is
possible to loop over this individual data and com-
pute the requested metrics.

Exposure Levels with data thre-
sholded at log10 100 þ 1ð Þ.
light_expo_lvl = raw.light.light_ex-
posure_level(threshold=log10(100 +
1))
light_expo_lvl.name = ‘Level_100’ #
Set the name for latter re-use
Time above threshold (TAT), setting
the threshold at log10 100 þ 1ð Þ and time in
minutes
light_tat = raw.light.TAT(thresh-
old=log10(100 + 1), oformat=“minute”)
light_tat.name = ‘TAT_100’
Mean light timing (MLiT), setting the
threshold at log10 500 þ 1ð Þ
light_mlit = raw.light.MLiT(thresh-
old=log10(500 + 1))
light_mlit.name = ‘MLit_500’

These function outputs are stored in pandas.Series
objects that can easily be manipulated and concate-
nated into a summary table (pandas.DataFrame) that
can be used for further statistical analysis or saved to
a file:

results = pd.concat([light_expo_lvl,
light_tat, light_mlit],axis = 1)
results.to_csv(‘tab1.csv’)

3.3.2. Group-level analysis
Visualization and inspection of individual data are
an import step in any analysis. However, once this
step is performed and the data are deemed suitable
to analysis, it might be useful to read individual files
by batch and compute metrics at the group level.

Here, we will show how to read all data files
from both clients and partners, compute various
metrics and compare the two groups.

To read multiple files at once, we can use the read_-
raw function from the IO module of pyActigraphy:

clients = pyActigraphy.io.read_raw(
fpath+‘CLIENT/C×.csv’,
reader_type=‘RPX’, period=‘6D’,
language=‘ENG_UK’, n_jobs = 5

)
partners = pyActigraphy.io.read_raw(
fpath+‘PARTNER/P×.csv’,
reader_type=‘RPX’, period=‘6D’,
language=‘ENG_UK’, n_jobs = 5

)

Both the clients and partners objects store data,
extracted from each individual files. Therefore,
it is possible to loop over this individual data
and compute the requested metrics.

Here, we will save the metric outputs to separate lists
and then concatenate them to form a summary table:

Fig. 1. Time series of light exposure levels.

6 G. HAMMAD ET AL.

Exposure Levels with data thre-
sholded at log10 100 þ 1ð Þ.
light_expo_lvl = raw.light.light_ex-
posure_level(threshold=log10(100 +
1))
light_expo_lvl.name = ‘Level_100’ #
Set the name for latter re-use
Time above threshold (TAT), setting
the threshold at log10 100 þ 1ð Þ and time in
minutes
light_tat = raw.light.TAT(thresh-
old=log10(100 + 1), oformat=“minute”)
light_tat.name = ‘TAT_100’
Mean light timing (MLiT), setting the
threshold at log10 500 þ 1ð Þ
light_mlit = raw.light.MLiT(thresh-
old=log10(500 + 1))
light_mlit.name = ‘MLit_500’

These function outputs are stored in pandas.Series
objects that can easily be manipulated and concate-
nated into a summary table (pandas.DataFrame) that
can be used for further statistical analysis or saved to
a file:

results = pd.concat([light_expo_lvl,
light_tat, light_mlit],axis = 1)
results.to_csv(‘tab1.csv’)

3.3.2. Group-level analysis
Visualization and inspection of individual data are
an import step in any analysis. However, once this
step is performed and the data are deemed suitable
to analysis, it might be useful to read individual files
by batch and compute metrics at the group level.

Here, we will show how to read all data files
from both clients and partners, compute various
metrics and compare the two groups.

To read multiple files at once, we can use the read_-
raw function from the IO module of pyActigraphy:

clients = pyActigraphy.io.read_raw(
fpath+‘CLIENT/C×.csv’,
reader_type=‘RPX’, period=‘6D’,
language=‘ENG_UK’, n_jobs = 5

)
partners = pyActigraphy.io.read_raw(
fpath+‘PARTNER/P×.csv’,
reader_type=‘RPX’, period=‘6D’,
language=‘ENG_UK’, n_jobs = 5

)

Both the clients and partners objects store data,
extracted from each individual files. Therefore,
it is possible to loop over this individual data
and compute the requested metrics.

Here, we will save the metric outputs to separate lists
and then concatenate them to form a summary table:

Fig. 1. Time series of light exposure levels.

6 G. HAMMAD ET AL.

Exposure Levels with data thre-
sholded at log10 100 þ 1ð Þ.
light_expo_lvl = raw.light.light_ex-
posure_level(threshold=log10(100 +
1))
light_expo_lvl.name = ‘Level_100’ #
Set the name for latter re-use
Time above threshold (TAT), setting
the threshold at log10 100 þ 1ð Þ and time in
minutes
light_tat = raw.light.TAT(thresh-
old=log10(100 + 1), oformat=“minute”)
light_tat.name = ‘TAT_100’
Mean light timing (MLiT), setting the
threshold at log10 500 þ 1ð Þ
light_mlit = raw.light.MLiT(thresh-
old=log10(500 + 1))
light_mlit.name = ‘MLit_500’

These function outputs are stored in pandas.Series
objects that can easily be manipulated and concate-
nated into a summary table (pandas.DataFrame) that
can be used for further statistical analysis or saved to
a file:

results = pd.concat([light_expo_lvl,
light_tat, light_mlit],axis = 1)
results.to_csv(‘tab1.csv’)

3.3.2. Group-level analysis
Visualization and inspection of individual data are
an import step in any analysis. However, once this
step is performed and the data are deemed suitable
to analysis, it might be useful to read individual files
by batch and compute metrics at the group level.

Here, we will show how to read all data files
from both clients and partners, compute various
metrics and compare the two groups.

To read multiple files at once, we can use the read_-
raw function from the IO module of pyActigraphy:

clients = pyActigraphy.io.read_raw(
fpath+‘CLIENT/C×.csv’,
reader_type=‘RPX’, period=‘6D’,
language=‘ENG_UK’, n_jobs = 5

)
partners = pyActigraphy.io.read_raw(
fpath+‘PARTNER/P×.csv’,
reader_type=‘RPX’, period=‘6D’,
language=‘ENG_UK’, n_jobs = 5

)

Both the clients and partners objects store data,
extracted from each individual files. Therefore,
it is possible to loop over this individual data
and compute the requested metrics.

Here, we will save the metric outputs to separate lists
and then concatenate them to form a summary table:

Fig. 1. Time series of light exposure levels.

6 G. HAMMAD ET AL.

Fig. 1.

Time series of light exposure levels.

Exposure Levels with data thre-
sholded at log10 100 þ 1ð Þ.
light_expo_lvl = raw.light.light_ex-
posure_level(threshold=log10(100 +
1))
light_expo_lvl.name = ‘Level_100’ #
Set the name for latter re-use
Time above threshold (TAT), setting
the threshold at log10 100 þ 1ð Þ and time in
minutes
light_tat = raw.light.TAT(thresh-
old=log10(100 + 1), oformat=“minute”)
light_tat.name = ‘TAT_100’
Mean light timing (MLiT), setting the
threshold at log10 500 þ 1ð Þ
light_mlit = raw.light.MLiT(thresh-
old=log10(500 + 1))
light_mlit.name = ‘MLit_500’

These function outputs are stored in pandas.Series
objects that can easily be manipulated and concate-
nated into a summary table (pandas.DataFrame) that
can be used for further statistical analysis or saved to
a file:

results = pd.concat([light_expo_lvl,
light_tat, light_mlit],axis = 1)
results.to_csv(‘tab1.csv’)

3.3.2. Group-level analysis
Visualization and inspection of individual data are
an import step in any analysis. However, once this
step is performed and the data are deemed suitable
to analysis, it might be useful to read individual files
by batch and compute metrics at the group level.

Here, we will show how to read all data files
from both clients and partners, compute various
metrics and compare the two groups.

To read multiple files at once, we can use the read_-
raw function from the IO module of pyActigraphy:

clients = pyActigraphy.io.read_raw(
fpath+‘CLIENT/C×.csv’,
reader_type=‘RPX’, period=‘6D’,
language=‘ENG_UK’, n_jobs = 5

)
partners = pyActigraphy.io.read_raw(
fpath+‘PARTNER/P×.csv’,
reader_type=‘RPX’, period=‘6D’,
language=‘ENG_UK’, n_jobs = 5

)

Both the clients and partners objects store data,
extracted from each individual files. Therefore,
it is possible to loop over this individual data
and compute the requested metrics.

Here, we will save the metric outputs to separate lists
and then concatenate them to form a summary table:

Fig. 1. Time series of light exposure levels.

6 G. HAMMAD ET AL.

lo
g 1

0
(L

ig
ht

 in
te

ns
ity

 +
 1

) (
ar

b.
 u

.)

5

4

3

2

1

0
Sep 7
2016

Sep 8 Sep 9 Sep 10 Sep 11 Sep 12

Blue Light
White Light
Green Light
Red Light

10 DLA Publications, Reprint, May 2024

Here, we will save the metric outputs to separate
lists and then concatenate them to form a summary
table:

Once the loop is completed, individual results are
concatenated into group-level summary tables:

Again, since the summary tables are pandas.Data-
Frame, it is possible to save them to csv files for
further use:

To analyze the partner’s data, it simply requires to
substitute the clients object by the partners object
and then re-use the same code for iterating over
individual files:

Declare empty lists
light_expo_lvls = []
light_tats = []
light_mlits = []

Loop over all the LightRecording
objects contained in ‘clients’:
for iread in clients.readers:
Compute light exposure levels:
light_expo_lvl = iread.light.
light_exposure_level(threshold=-
log10(100 + 1))
light_expo_lvl.name = iread.name #
set name to participant’s name
light_expo_lvls.append(light_ex-
po_lvl) # store

output in its dedicated list

Compute time above threshold:
light_tat = iread.light.TAT(thresh-
old=log10(100 + 1), oformat=“time-
delta”)
light_tat.name = iread.name # set name
to participant’s name
light_tats.append(light_tat) # store
output in its dedicated list

Compute mean light timing:
light_mlit = iread.light.MLiT
(threshold=log10(500 + 1))
light_mlit.name = iread.name # set
name to participant’s name
light_mlits.append(light_mlit) #
store output in its dedicated list

Once the loop is completed, individual results are
concatenated into group-level summary tables:

clients_light_expo_lvl_results = pd.
concat(light_expo_lvls,axis = 1).T
clients_light_tat_results = pd.con-
cat(light_tats,axis = 1).T
clients_light_mlit_results = pd.con-
cat(light_mlits,axis = 1).T

Again, since the summary tables are pandas.
DataFrame, it is possible to save them to csv files for
further use:

clients_light_expo_lvl_results.
to_csv(‘tab_clients_expo_100.csv’)
clients_light_tat_results.to_csv
(‘tab_clients_tat_100.csv’)

clients_light_mlit_results.to_csv
(‘tab_clients_mlit_500.csv’)

To analyze the partner’s data, it simply requires to
substitute the clients object by the partners object and
then re-use the same code for iterating over individual
files:

Reset lists before storing indivi-
dual results:
light_expo_lvls = []
light_tats = []
light_mlits = []
for iread in partners.readers: # here,
clients has been changed to partners.

light_expo_lvl = iread.light.
light_exposure_level(threshold=-
log10(100 + 1))
light_expo_lvl.name = iread.name
light_expo_lvls.append(light_ex-
po_lvl)

light_tat = iread.light.TAT
(threshold=log10(100 + 1), ofor-
mat=‘minute’)
light_tat.name = iread.name
light_tats.append(light_tat)

light_mlit = iread.light.MLiT
(threshold=log10(500 + 1))
light_mlit.name = iread.name
light_mlits.append(light_mlit)

Concatenate individual results
for the partners
partners_light_expo_lvl_results =
pd.concat(light_expo_lvls,axis =
1).T
partners_light_tat_results = pd.
concat(light_tats,axis = 1).T
partners_light_mlit_results = pd.
concat(light_
mlits,axis = 1).T

Save results to.csv files
partners_light_expo_lvl_results.
to_csv(‘tab_part
ners_expo_100.csv’)
partners_light_tat_results.to_csv
(‘tab_partner
s_tat_100.csv’)
partners_light_mlit_results.
to_csv(‘tab_part
ners_mlit_500.csv’)

LEUKOS 7
Declare empty lists
light_expo_lvls = []
light_tats = []
light_mlits = []

Loop over all the LightRecording
objects contained in ‘clients’:
for iread in clients.readers:
Compute light exposure levels:
light_expo_lvl = iread.light.
light_exposure_level(threshold=-
log10(100 + 1))
light_expo_lvl.name = iread.name #
set name to participant’s name
light_expo_lvls.append(light_ex-
po_lvl) # store

output in its dedicated list

Compute time above threshold:
light_tat = iread.light.TAT(thresh-
old=log10(100 + 1), oformat=“time-
delta”)
light_tat.name = iread.name # set name
to participant’s name
light_tats.append(light_tat) # store
output in its dedicated list

Compute mean light timing:
light_mlit = iread.light.MLiT
(threshold=log10(500 + 1))
light_mlit.name = iread.name # set
name to participant’s name
light_mlits.append(light_mlit) #
store output in its dedicated list

Once the loop is completed, individual results are
concatenated into group-level summary tables:

clients_light_expo_lvl_results = pd.
concat(light_expo_lvls,axis = 1).T
clients_light_tat_results = pd.con-
cat(light_tats,axis = 1).T
clients_light_mlit_results = pd.con-
cat(light_mlits,axis = 1).T

Again, since the summary tables are pandas.
DataFrame, it is possible to save them to csv files for
further use:

clients_light_expo_lvl_results.
to_csv(‘tab_clients_expo_100.csv’)
clients_light_tat_results.to_csv
(‘tab_clients_tat_100.csv’)

clients_light_mlit_results.to_csv
(‘tab_clients_mlit_500.csv’)

To analyze the partner’s data, it simply requires to
substitute the clients object by the partners object and
then re-use the same code for iterating over individual
files:

Reset lists before storing indivi-
dual results:
light_expo_lvls = []
light_tats = []
light_mlits = []
for iread in partners.readers: # here,
clients has been changed to partners.

light_expo_lvl = iread.light.
light_exposure_level(threshold=-
log10(100 + 1))
light_expo_lvl.name = iread.name
light_expo_lvls.append(light_ex-
po_lvl)

light_tat = iread.light.TAT
(threshold=log10(100 + 1), ofor-
mat=‘minute’)
light_tat.name = iread.name
light_tats.append(light_tat)

light_mlit = iread.light.MLiT
(threshold=log10(500 + 1))
light_mlit.name = iread.name
light_mlits.append(light_mlit)

Concatenate individual results
for the partners
partners_light_expo_lvl_results =
pd.concat(light_expo_lvls,axis =
1).T
partners_light_tat_results = pd.
concat(light_tats,axis = 1).T
partners_light_mlit_results = pd.
concat(light_
mlits,axis = 1).T

Save results to.csv files
partners_light_expo_lvl_results.
to_csv(‘tab_part
ners_expo_100.csv’)
partners_light_tat_results.to_csv
(‘tab_partner
s_tat_100.csv’)
partners_light_mlit_results.
to_csv(‘tab_part
ners_mlit_500.csv’)

LEUKOS 7

Declare empty lists
light_expo_lvls = []
light_tats = []
light_mlits = []

Loop over all the LightRecording
objects contained in ‘clients’:
for iread in clients.readers:
Compute light exposure levels:
light_expo_lvl = iread.light.
light_exposure_level(threshold=-
log10(100 + 1))
light_expo_lvl.name = iread.name #
set name to participant’s name
light_expo_lvls.append(light_ex-
po_lvl) # store

output in its dedicated list

Compute time above threshold:
light_tat = iread.light.TAT(thresh-
old=log10(100 + 1), oformat=“time-
delta”)
light_tat.name = iread.name # set name
to participant’s name
light_tats.append(light_tat) # store
output in its dedicated list

Compute mean light timing:
light_mlit = iread.light.MLiT
(threshold=log10(500 + 1))
light_mlit.name = iread.name # set
name to participant’s name
light_mlits.append(light_mlit) #
store output in its dedicated list

Once the loop is completed, individual results are
concatenated into group-level summary tables:

clients_light_expo_lvl_results = pd.
concat(light_expo_lvls,axis = 1).T
clients_light_tat_results = pd.con-
cat(light_tats,axis = 1).T
clients_light_mlit_results = pd.con-
cat(light_mlits,axis = 1).T

Again, since the summary tables are pandas.
DataFrame, it is possible to save them to csv files for
further use:

clients_light_expo_lvl_results.
to_csv(‘tab_clients_expo_100.csv’)
clients_light_tat_results.to_csv
(‘tab_clients_tat_100.csv’)

clients_light_mlit_results.to_csv
(‘tab_clients_mlit_500.csv’)

To analyze the partner’s data, it simply requires to
substitute the clients object by the partners object and
then re-use the same code for iterating over individual
files:

Reset lists before storing indivi-
dual results:
light_expo_lvls = []
light_tats = []
light_mlits = []
for iread in partners.readers: # here,
clients has been changed to partners.

light_expo_lvl = iread.light.
light_exposure_level(threshold=-
log10(100 + 1))
light_expo_lvl.name = iread.name
light_expo_lvls.append(light_ex-
po_lvl)

light_tat = iread.light.TAT
(threshold=log10(100 + 1), ofor-
mat=‘minute’)
light_tat.name = iread.name
light_tats.append(light_tat)

light_mlit = iread.light.MLiT
(threshold=log10(500 + 1))
light_mlit.name = iread.name
light_mlits.append(light_mlit)

Concatenate individual results
for the partners
partners_light_expo_lvl_results =
pd.concat(light_expo_lvls,axis =
1).T
partners_light_tat_results = pd.
concat(light_tats,axis = 1).T
partners_light_mlit_results = pd.
concat(light_
mlits,axis = 1).T

Save results to.csv files
partners_light_expo_lvl_results.
to_csv(‘tab_part
ners_expo_100.csv’)
partners_light_tat_results.to_csv
(‘tab_partner
s_tat_100.csv’)
partners_light_mlit_results.
to_csv(‘tab_part
ners_mlit_500.csv’)

LEUKOS 7

Declare empty lists
light_expo_lvls = []
light_tats = []
light_mlits = []

Loop over all the LightRecording
objects contained in ‘clients’:
for iread in clients.readers:
Compute light exposure levels:
light_expo_lvl = iread.light.
light_exposure_level(threshold=-
log10(100 + 1))
light_expo_lvl.name = iread.name #
set name to participant’s name
light_expo_lvls.append(light_ex-
po_lvl) # store

output in its dedicated list

Compute time above threshold:
light_tat = iread.light.TAT(thresh-
old=log10(100 + 1), oformat=“time-
delta”)
light_tat.name = iread.name # set name
to participant’s name
light_tats.append(light_tat) # store
output in its dedicated list

Compute mean light timing:
light_mlit = iread.light.MLiT
(threshold=log10(500 + 1))
light_mlit.name = iread.name # set
name to participant’s name
light_mlits.append(light_mlit) #
store output in its dedicated list

Once the loop is completed, individual results are
concatenated into group-level summary tables:

clients_light_expo_lvl_results = pd.
concat(light_expo_lvls,axis = 1).T
clients_light_tat_results = pd.con-
cat(light_tats,axis = 1).T
clients_light_mlit_results = pd.con-
cat(light_mlits,axis = 1).T

Again, since the summary tables are pandas.
DataFrame, it is possible to save them to csv files for
further use:

clients_light_expo_lvl_results.
to_csv(‘tab_clients_expo_100.csv’)
clients_light_tat_results.to_csv
(‘tab_clients_tat_100.csv’)

clients_light_mlit_results.to_csv
(‘tab_clients_mlit_500.csv’)

To analyze the partner’s data, it simply requires to
substitute the clients object by the partners object and
then re-use the same code for iterating over individual
files:

Reset lists before storing indivi-
dual results:
light_expo_lvls = []
light_tats = []
light_mlits = []
for iread in partners.readers: # here,
clients has been changed to partners.

light_expo_lvl = iread.light.
light_exposure_level(threshold=-
log10(100 + 1))
light_expo_lvl.name = iread.name
light_expo_lvls.append(light_ex-
po_lvl)

light_tat = iread.light.TAT
(threshold=log10(100 + 1), ofor-
mat=‘minute’)
light_tat.name = iread.name
light_tats.append(light_tat)

light_mlit = iread.light.MLiT
(threshold=log10(500 + 1))
light_mlit.name = iread.name
light_mlits.append(light_mlit)

Concatenate individual results
for the partners
partners_light_expo_lvl_results =
pd.concat(light_expo_lvls,axis =
1).T
partners_light_tat_results = pd.
concat(light_tats,axis = 1).T
partners_light_mlit_results = pd.
concat(light_
mlits,axis = 1).T

Save results to.csv files
partners_light_expo_lvl_results.
to_csv(‘tab_part
ners_expo_100.csv’)
partners_light_tat_results.to_csv
(‘tab_partner
s_tat_100.csv’)
partners_light_mlit_results.
to_csv(‘tab_part
ners_mlit_500.csv’)

LEUKOS 7

Declare empty lists
light_expo_lvls = []
light_tats = []
light_mlits = []

Loop over all the LightRecording
objects contained in ‘clients’:
for iread in clients.readers:
Compute light exposure levels:
light_expo_lvl = iread.light.
light_exposure_level(threshold=-
log10(100 + 1))
light_expo_lvl.name = iread.name #
set name to participant’s name
light_expo_lvls.append(light_ex-
po_lvl) # store

output in its dedicated list

Compute time above threshold:
light_tat = iread.light.TAT(thresh-
old=log10(100 + 1), oformat=“time-
delta”)
light_tat.name = iread.name # set name
to participant’s name
light_tats.append(light_tat) # store
output in its dedicated list

Compute mean light timing:
light_mlit = iread.light.MLiT
(threshold=log10(500 + 1))
light_mlit.name = iread.name # set
name to participant’s name
light_mlits.append(light_mlit) #
store output in its dedicated list

Once the loop is completed, individual results are
concatenated into group-level summary tables:

clients_light_expo_lvl_results = pd.
concat(light_expo_lvls,axis = 1).T
clients_light_tat_results = pd.con-
cat(light_tats,axis = 1).T
clients_light_mlit_results = pd.con-
cat(light_mlits,axis = 1).T

Again, since the summary tables are pandas.
DataFrame, it is possible to save them to csv files for
further use:

clients_light_expo_lvl_results.
to_csv(‘tab_clients_expo_100.csv’)
clients_light_tat_results.to_csv
(‘tab_clients_tat_100.csv’)

clients_light_mlit_results.to_csv
(‘tab_clients_mlit_500.csv’)

To analyze the partner’s data, it simply requires to
substitute the clients object by the partners object and
then re-use the same code for iterating over individual
files:

Reset lists before storing indivi-
dual results:
light_expo_lvls = []
light_tats = []
light_mlits = []
for iread in partners.readers: # here,
clients has been changed to partners.

light_expo_lvl = iread.light.
light_exposure_level(threshold=-
log10(100 + 1))
light_expo_lvl.name = iread.name
light_expo_lvls.append(light_ex-
po_lvl)

light_tat = iread.light.TAT
(threshold=log10(100 + 1), ofor-
mat=‘minute’)
light_tat.name = iread.name
light_tats.append(light_tat)

light_mlit = iread.light.MLiT
(threshold=log10(500 + 1))
light_mlit.name = iread.name
light_mlits.append(light_mlit)

Concatenate individual results
for the partners
partners_light_expo_lvl_results =
pd.concat(light_expo_lvls,axis =
1).T
partners_light_tat_results = pd.
concat(light_tats,axis = 1).T
partners_light_mlit_results = pd.
concat(light_
mlits,axis = 1).T

Save results to.csv files
partners_light_expo_lvl_results.
to_csv(‘tab_part
ners_expo_100.csv’)
partners_light_tat_results.to_csv
(‘tab_partner
s_tat_100.csv’)
partners_light_mlit_results.
to_csv(‘tab_part
ners_mlit_500.csv’)

LEUKOS 7
Declare empty lists
light_expo_lvls = []
light_tats = []
light_mlits = []

Loop over all the LightRecording
objects contained in ‘clients’:
for iread in clients.readers:
Compute light exposure levels:
light_expo_lvl = iread.light.
light_exposure_level(threshold=-
log10(100 + 1))
light_expo_lvl.name = iread.name #
set name to participant’s name
light_expo_lvls.append(light_ex-
po_lvl) # store

output in its dedicated list

Compute time above threshold:
light_tat = iread.light.TAT(thresh-
old=log10(100 + 1), oformat=“time-
delta”)
light_tat.name = iread.name # set name
to participant’s name
light_tats.append(light_tat) # store
output in its dedicated list

Compute mean light timing:
light_mlit = iread.light.MLiT
(threshold=log10(500 + 1))
light_mlit.name = iread.name # set
name to participant’s name
light_mlits.append(light_mlit) #
store output in its dedicated list

Once the loop is completed, individual results are
concatenated into group-level summary tables:

clients_light_expo_lvl_results = pd.
concat(light_expo_lvls,axis = 1).T
clients_light_tat_results = pd.con-
cat(light_tats,axis = 1).T
clients_light_mlit_results = pd.con-
cat(light_mlits,axis = 1).T

Again, since the summary tables are pandas.
DataFrame, it is possible to save them to csv files for
further use:

clients_light_expo_lvl_results.
to_csv(‘tab_clients_expo_100.csv’)
clients_light_tat_results.to_csv
(‘tab_clients_tat_100.csv’)

clients_light_mlit_results.to_csv
(‘tab_clients_mlit_500.csv’)

To analyze the partner’s data, it simply requires to
substitute the clients object by the partners object and
then re-use the same code for iterating over individual
files:

Reset lists before storing indivi-
dual results:
light_expo_lvls = []
light_tats = []
light_mlits = []
for iread in partners.readers: # here,
clients has been changed to partners.

light_expo_lvl = iread.light.
light_exposure_level(threshold=-
log10(100 + 1))
light_expo_lvl.name = iread.name
light_expo_lvls.append(light_ex-
po_lvl)

light_tat = iread.light.TAT
(threshold=log10(100 + 1), ofor-
mat=‘minute’)
light_tat.name = iread.name
light_tats.append(light_tat)

light_mlit = iread.light.MLiT
(threshold=log10(500 + 1))
light_mlit.name = iread.name
light_mlits.append(light_mlit)

Concatenate individual results
for the partners
partners_light_expo_lvl_results =
pd.concat(light_expo_lvls,axis =
1).T
partners_light_tat_results = pd.
concat(light_tats,axis = 1).T
partners_light_mlit_results = pd.
concat(light_
mlits,axis = 1).T

Save results to.csv files
partners_light_expo_lvl_results.
to_csv(‘tab_part
ners_expo_100.csv’)
partners_light_tat_results.to_csv
(‘tab_partner
s_tat_100.csv’)
partners_light_mlit_results.
to_csv(‘tab_part
ners_mlit_500.csv’)

LEUKOS 7

11DLA Publications, Reprint, May 2024

Fig. 2.

M
ea

n
lig

ht
 e

xp
os

ur
e

le
ve

l (
ar

b.
 u

.)

2.9

2.8

2.7

2.6

2.5

2.4

3

2.3
Clients Partners

Clients
Partners

These summary files can now serve as input for
statistical analyses, for example, or for visual rep-
resentation of the results (Fig. 2):

Boxplot of the mean light exposure level for clients and partners.These summary files can now serve as input for
statistical analyses, for example, or for visual
representation of the results (Fig. 2):

fig = go.Figure()
fig.add _trace(go.Box(
y=clients_light_expo_lvl_results.
loc[:,‘White Light’],
name=‘Clients’,
marker_color=‘darkblue,’
#boxmean=True

))
fig.add _trace(go.Box(

y=partners_light_expo_lvl_re-
sults.loc[:,‘White Light’],
name=‘Partners’,
marker_color=‘royalblue’,
#boxmean=True

))
fig.update _layout
(yaxis_title=r’Mean light exposure
level,’ height = 500,width = 500);
Display box plot
fig.show ()
Save
fig.write _image(‘fig_grp_explevel.
png’, scale = 6)

4. Future directions

As more light loggers and dosimeters are being
developed, the pyLight module will serve as
a useful software entry point for the analysis of
data produced by these devices. pyLight is able to
perform its calculations in a device-agnostic man-
ner, as long as the data stored on the device are
accessible and use an open format that can be
loaded into Python. Using a programmatic
approach to light exposure facilitates sensitivity
analyses in which thresholds in threshold-based
metrics (such as TAT and MLiT) are varied sys-
tematically and the effect on a response variable is
observed (Peeters et al. 2022). As the field of light
logging and dosimetry matures, pyLight can be
expanded to account for newly developed metrics,
and can serve as a benchmark for alternative soft-
ware solutions.

5. Conclusion

In conclusion, we presented pyLight, an extension
to pyActigraphy, designed for the analysis of light
exposure data. The module reports a series of light
exposure metrics, which can be applied on a range

Fig. 2. Boxplot of the mean light exposure level for clients and partners.

8 G. HAMMAD ET AL.

These summary files can now serve as input for
statistical analyses, for example, or for visual
representation of the results (Fig. 2):

fig = go.Figure()
fig.add _trace(go.Box(
y=clients_light_expo_lvl_results.
loc[:,‘White Light’],
name=‘Clients’,
marker_color=‘darkblue,’
#boxmean=True

))
fig.add _trace(go.Box(

y=partners_light_expo_lvl_re-
sults.loc[:,‘White Light’],
name=‘Partners’,
marker_color=‘royalblue’,
#boxmean=True

))
fig.update _layout
(yaxis_title=r’Mean light exposure
level,’ height = 500,width = 500);
Display box plot
fig.show ()
Save
fig.write _image(‘fig_grp_explevel.
png’, scale = 6)

4. Future directions

As more light loggers and dosimeters are being
developed, the pyLight module will serve as
a useful software entry point for the analysis of
data produced by these devices. pyLight is able to
perform its calculations in a device-agnostic man-
ner, as long as the data stored on the device are
accessible and use an open format that can be
loaded into Python. Using a programmatic
approach to light exposure facilitates sensitivity
analyses in which thresholds in threshold-based
metrics (such as TAT and MLiT) are varied sys-
tematically and the effect on a response variable is
observed (Peeters et al. 2022). As the field of light
logging and dosimetry matures, pyLight can be
expanded to account for newly developed metrics,
and can serve as a benchmark for alternative soft-
ware solutions.

5. Conclusion

In conclusion, we presented pyLight, an extension
to pyActigraphy, designed for the analysis of light
exposure data. The module reports a series of light
exposure metrics, which can be applied on a range

Fig. 2. Boxplot of the mean light exposure level for clients and partners.

8 G. HAMMAD ET AL.

12 DLA Publications, Reprint, May 2024

 4. Future directions
As more light loggers and dosimeters are being
developed, the pyLight module will serve as a
useful software entry point for the analysis of data
produced by these devices. pyLight is able to per-
form its calculations in a device-agnostic manner,
as long as the data stored on the device are ac-
cessible and use an open format that can be load-
ed into Python. Using a programmatic approach
to light exposure facilitates sensitivity analyses in
which thresholds in threshold-based metrics (such
as TAT and MLiT) are varied systematically and the
effect on a response variable is observed (Peeters
et al. 2022). As the field of light logging and dosim-
etry matures, pyLight can be expanded to account
for newly developed metrics, and can serve as a
benchmark for alternative software solutions.

 5. Conclusion
In conclusion, we presented pyLight, an extension
to pyActigraphy, designed for the analysis of light
exposure data. The module reports a series of light
exposure metrics, which can be applied on a range
of different existing file formats. We have present-
ed a worked example demonstrating the use of
the pyLight module on a previously published ac-
tigraphy data set containing light exposure.

Authors contributions
Conceptualization: GH, KW, DS, MM, MS
Data curation: n/a
Formal Analysis: GH
Funding acquisition: MM, MS
Investigation: n/a
Methodology: GH
Project administration: MM, MS
Resources: n/a
Software: GH
Supervision: n/a
Validation: GH
Visualization: GH
Writing – original draft: GH, MS
Writing – review & editing: GH, KW, DS,
MM, MS

Disclosure statement
No potential conflict of interest was
reported by the author(s).

Acknowledgements
We thank the Daylight Academy for
supporting this project.

13DLA Publications, Reprint, May 2024

Aarts MPJ, van Duijnhoven J, Aries MBC, Rosemann ALP. 2017. Performance of personally worn dosim-
eters to study non-image forming effects of light: assessment methods. Build Environ. 117:60–72.
doi:10.1016/j.buildenv.2017.03.002.

Angelova M, Kusmakar S, Karmakar C, Zhu Y, Shelyag S, Drummond S, Ellis J. 2020. Chronic insomnia and
bed partner actigraphy data [Internet]. Dryad Digital Repository. 18036133 bytes. doi:10.5061/DRY-
AD.B8GTHT7BH.

Bierman A, Klein TR, Rea MS. 2005. The Daysimeter: a device for measuring optical radiation as a stimulus
for the human circadian system. Meas Sci Technol. 16 (11):2292–2299.

Blume C, Garbazza C, Spitschan M. 2019. Effects of light on human circadian rhythms, sleep and mood.
Somnologie (Berl). 23(3):147–156.

Brown TM, Brainard GC, Cajochen C, Czeisler CA, Hanifin JP, Lockley SW, Lucas RJ, Münch M, O’Hagan
JB, Peirson SN, Price LLA, et al. 2022. Recommendations for daytime, evening, and nighttime in-
door light exposure to best support physiology, sleep, and wakefulness in healthy adults. PLoS Biol.
20(3):e3001571. doi:10.1371/journal.pbio.3001571.

Campbell SS, Kripke DF, Gillin JC, Hrubovcak JC. 1988. Exposure to light in healthy elderly subjects and
alzheimer’s patients. Physiology & Behavior. 42(2):141–144. doi:10.1016/0031-9384(88)90289-2.

Dumont M, Beaulieu C. 2007. Light exposure in the natural environment: relevance to mood and sleep
disorders. Sleep Med. 8(6):557–565.

Figueiro MG, Hamner R, Bierman A, Rea MS. 2013. Comparisons of three practical field devices used to
measure personal light exposures and activity levels. Light Res Technol. 45(4):421–434.

Hammad G, Reyt M, Beliy N, Baillet M, Deantoni M, Lesoinne A, Muto V, Schmidt C. 2021. pyActigraphy:
open-source python package for actigraphy data visualization and analysis. PLoS Comput Biol.
17(10):e1009514. doi:10.1371/journal.pcbi.1009514.

Hartmeyer S, Webler F, Andersen M. 2022. Towards a framework for light-dosimetry studies: methodologi-
cal considerations. Light Res Technol. 147715352211032. doi:10.1177/14771535221103258.

Houser KW, Esposito T. 2021. Human-centric lighting: foundational considerations and a five-step design
process. Front Neurol. 12:630553.

Hubalek S, Brink M, Schierz C. 2010. Office workers’ daily exposure to light and its influence on sleep quali-
ty and mood. Light Res Technol. 42(1):33–50. doi:10.1177/1477153509355632.

Hubalek S, Zöschg D, Schierz C. 2006. LuxBlick – a measurement device for recording corneal illuminance
and effective irradiance regarding unspecific biological effects [Abstracts from the 17th annual meet-
ing of the society for light treatment and biological rhythms (Eindhoven, the Netherlands)]. Chronobi-
ol Int. 23
(3):695–746. doi:10.1080/07420520600767622.

Jardim AC, Pawley MD, Cheeseman JF, Guesgen MJ, Steele CT, Warman GR. 2011. Validating the use of
wrist-level light monitoring for in-hospital circadian studies. Chronobiol Int. 28(9):834–840.

Kim SJ, Lim YC, Kwon HJ, Lee JH. 2020. Association of rest–activity and light exposure rhythms with sleep
quality in insomnia patients. Chronobiol Int. 37(3):403–413. doi:10. 1080/07420528.2019.1696810.

Kusmakar S, Karmakar C, Zhu Y, Shelyag S, Drummond SPA, Ellis JG, Angelova M. 2021. A machine learn-
ing model for multi-night actigraphic detection of chronic insomnia: development and validation of a
pre-screening tool. R Soc Open Sci. 8(6):202264.

Mansencal T, Mauderer M, Parsons M, Shaw N, Wheatley K, Cooper S, Vandenberg JD, Canavan L, Crowson
K, Lev O, et al. 2022. Colour 0.4.1 [Internet]. doi:10.5281/ZENODO. 605791.

Markvart J, Hansen ÅM, Christoffersen J. 2015. Comparison and correction of the light sensor output
from 48 wearable light exposure devices by using a side-by-side field calibration method. LEUKOS.
11(3):155–171.

Mellor A, Hamill K, Jenkins MM, Baucom DH, Norton PJ, Drummond SPA. 2019. Partner-assisted cognitive
behavioural therapy for insomnia versus cognitive behavioural therapy for insomnia: a randomised
controlled trial. Trials. 20(1):262. doi:10.1186/s13063-019-3334-3.

Münch M, Wirz-Justice A, Brown SA, Kantermann T, Martiny K, Stefani O, Vetter C, Wright KP, Wulff K, Skene
DJ. 2020. The role of daylight for humans: gaps in Current knowledge. Clocks Sleep. 2(1):61–85.

Okudaira N, Kripke DF, Webster JB. 1983. Naturalistic studies of human light exposure. Am J Physiol.
245(4):R613– 615.

References

14 DLA Publications, Reprint, May 2024

Peeters ST, Smolders KCHJ, Kompier ME, de Kort YAW. 2022. Let me count the light. Accounting for
intensity, duration and timing of light when predicting sleep and subjective alertness in field studies.
LEUKOS. 18 (4):417–437. doi:10.1080/15502724.2021.2001345.

Reid KJ, Santostasi G, Baron KG, Wilson J, Kang J, Zee PC. 2014. Timing and intensity of light correlate
with body weight in adults. Mistlberger RE, editor. PLoS One. 9(4): e92251. doi:10.1371/journal.
pone.0092251.

Savides TJ, Messin S, Senger C, Kripke DF. 1986. Natural light exposure of young adults. Physiology &
Behavior. 38 (4):571–574. doi:10.1016/0031-9384(86)90427-0.

Scheuermaier K, Laffan AM, Duffy JF. 2010. Light exposure patterns in healthy older and young adults. J
Biol Rhythms. 25(2):113–122. doi:10.1177/0748730410361916.

Smet KAG. 2020. Tutorial: the LuxPy python toolbox for lighting and color science. LEUKOS. 16(3):179–201.
doi:10.1080/15502724.2018.1518717.

Smolders KCHJ, de Kort YAW, van den Berg SM. 2013. Daytime light exposure and feelings of vitality:
results of a field study during regular weekdays. J Environ Psychol. 36:270–279. doi:10.1016/j.jen-
vp.2013.09.004.

Sokolove PG, Bushell WN. 1978. The chi square periodogram: its utility for analysis of circadian rhythms. J
Theor Biol. 72(1):131–160.

Spitschan M, Joyce DS. 2023. Human-centric lighting research and policy in the Melanopsin Age. Policy
Insights Behav Brain Sci. 10(2):237–246. doi:10.1177/ 23727322231196896.

Spitschan M, Mead J, Roos C, Lowis C, Griffiths B, Mucur P, Herf M. 2021. Luox: novel validated open-ac-
cess and open-source web platform for calculating and sharing physiologically relevant quantities for
light and lighting. Wellcome Open Res. 6:69. doi:10. 12688/wellcomeopenres.16595.2.

Spitschan M, Smolders K, Vandendriessche B, Bent B, Bakker JP, Rodriguez-Chavez IR, Vetter C. 2022.
Verification, analytical validation and clinical validation (V3) of wearable dosimeters and light loggers.
Digital Health. 8:205520762211448. doi:10.1177/20552076221144858.

Stampfli J, Schrader B, di Battista C, Häfliger R, Schälli O, Wichmann G, Zumbühl C, Blattner P, Cajochen
C, Lazar R, et al. 2023. The light-dosimeter: a new device to help advance research on the non-visual
responses to light. Light Res Technol. 147715352211471. doi:10.1177/14771535221147140

Stefani O, Cajochen C. 2021. Should we re-think regulations and standards for lighting at workplaces? A
practice review on existing lighting recommendations. Front Psychiatry. 12:652161.

Thorne HC, Jones KH, Peters SP, Archer SN, Dijk D-J. 2009. Daily and seasonal variation in
the spectral composition of light exposure in humans. Chronobiol Int. 26(5):854–866.
doi:10.1080/07420520903044315.

Van Someren EJ, Kessler A, Mirmiran M, Swaab DF. 1997. Indirect bright light improves circadian rest-ac-
tivity rhythm disturbances in demented patients. Biol Psychiatry. 41(9):955–963. doi:10.1016/S0006-
3223(97) 89928-3.

Vetter C, Pattison PM, Houser K, Herf M, Phillips AJK, Wright KP, Skene DJ, Brainard GC, Boivin DB, Glick-
man G. 2022. A review of human physiological responses to light: implications for the development of
integrative lighting solutions. LEUKOS. 18(3):387–414. doi:10.1080/15502724.2021.1872383.

Wams EJ, Woelders T, Marring I, van Rosmalen L, Beersma DGM, Gordijn MCM, Hut RA. 2017. Linking
light exposure and subsequent sleep: a field polysomnography study in humans. Sleep. 40(12).
doi:10.1093/sleep/zsx165.

Webler FS, Spitschan M, Foster RG, Andersen M, Peirson SN. 2019. What is the ‘spectral diet’of humans?
Curr Opin Behav Sci. 30:80–86. doi:10.1016/j.cobeha.2019.06.006.

Witting W, Kwa IH, Eikelenboom P, Mirmiran M, Swaab DF. 1990. Alterations in the circadian rest-ac-
tivity rhythm in aging and Alzheimer’s disease. Biol Psychiatry. 27(6):563–572. doi:10.1016/0006-
3223(90)90523-5.

Woelders T, Beersma DGM, Gordijn MCM, Hut RA, Wams EJ. 2017. Daily light exposure pat-
terns reveal phase and period of the human circadian clock. J Biol Rhythms. 32(3):274–286.
doi:10.1177/0748730417696787.

15DLA Publications, Reprint, May 2024

This paper was first published as: Hammad,
G., Wulff, K., Skene, D. J., Münch, M., &
Spitschan, M. (2024). Open-source Python
module for the analysis of personalized light
exposure data from wearable light loggers
and dosimeters. LEUKOS. The online version
of this article can be found at: https://doi.org/
10.1080/15502724.2023.2296863. Published
by Taylor & Francis Group, LLC. This LEUKOS
article is distributed under the terms of the
Creative Commons license. The copyright is
retained by the authors.

Funding
This project was financially supported by
the Daylight Academy (DLA), a non-profit
organization to promote the research on and
use of daylight funded by the Velux Stiftung.
K.W., D.S., M.M. and M.S. are members of
DLA. During early parts of this work, G.H., and
M.S. were supported by participating in the
OLS-3 (Open Life Sciences) program. During
parts of this work, M.S. was supported by a
Sir Henry Wellcome Postdoctoral Fellowship

(Wellcome Trust, 204686/Z/16/Z) and Linacre
College, University of Oxford (Biomedical
Sciences Junior Research Fellowship). M.M. is
supported by the Velux Stiftung. K.W.’s contri-
bution was in part supported by the Knut and
Wallenberg Foundation.

ORCID
Manuel Spitschan
http://orcid.org/0000-0002-8572-9268
Mirjam Münch:
https://orcid.org/0000-0003-2087-9916
Debra J. Skene:
https://orcid.org/0000-0001-8202-6180

Copyrights
Cover page: Photo by Dyu - Ha from
Unsplash https://unsplash.com/de/fotos/
nahaufnahme-der-linken-menschlichen-hand-
flache-nGo-UVGKAxI

Page 4: Photo by Wonderlane from Unsplash
https://unsplash.com/de/fotos/sonnenstrahl-
en-die-durch-baume-kommen-_rmULTYorYQ

Imprint

Publisher:
Daylight Academy
a VELUX STIFTUNG initiative
https://daylight.academy/

VELUX STIFTUNG
Kirchgasse 42
8001 Zurich
Switzerland
office@daylight academy

Conception / Design:
Hilda Ltd., Steinhausen,
Switzerland

Print:
Grafisk senter NTNU, TRD/NO

https://daylight.academy/
mailto:office%40daylight%20academy?subject=

www.daylight.academy
office@daylight.academy

Daylight Academy
A VELUX STIFTUNG initiative
Kirchgasse 42
8001 Zürich
Switzerland

http://www.daylight.academy
mailto:office%40daylight.academy?subject=

